Algorithms: Complexity (Big Omega and Big Theta)

Omega Notation

<u>Definition</u>: $T(n) = \Omega(f(n))$

If and only if there exist constants c, n_0 such that

$$T(n) \ge c \cdot f(n) \quad \forall n \ge n_0$$
.

Picture

$$T(n) = \Omega(f(n))$$

Big Omega notation

Lower bounds. f(n) is $\Omega(g(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that $f(n) \ge c \cdot g(n) \ge 0$ for all $n \ge n_0$.

Ex.
$$f(n) = 32n^2 + 17n + 1$$
.

- f(n) is both $\Omega(n^2)$ and $\Omega(n)$. \leftarrow choose $c = 32, n_0 = 1$
- f(n) is not $\Omega(n^3)$.

Typical usage. Any compare-based sorting algorithm requires $\Omega(n \log n)$ compares in the worst case.

Vacuous statement. Any compare-based sorting algorithm requires at least $O(n \log n)$ compares in the worst case.

n f(n)	$\lg n$	n	$n \lg n$	n^2	2^n	n!
10	$0.003~\mu s$	$0.01~\mu s$	$0.033~\mu s$	$0.1~\mu \mathrm{s}$	$1 \mu s$	$3.63 \mathrm{\ ms}$
20	$0.004~\mu s$	$0.02~\mu \mathrm{s}$	$0.086~\mu { m s}$	$0.4~\mu \mathrm{s}$	1 ms	77.1 years
30	$0.005~\mu s$	$0.03~\mu s$	$0.147 \ \mu s$	$0.9~\mu s$	1 sec	$8.4 \times 10^{15} \text{ yrs}$
40	$0.005 \ \mu s$	$0.04~\mu s$	$0.213~\mu { m s}$	$1.6~\mu \mathrm{s}$	18.3 min	
50	$0.006~\mu { m s}$	$0.05~\mu s$	$0.282~\mu { m s}$	$2.5~\mu \mathrm{s}$	13 days	
100	$0.007~\mu s$	$0.1~\mu s$	$0.644~\mu { m s}$	$10~\mu s$	$4 \times 10^{13} \text{ yrs}$	
1,000	$0.010 \ \mu s$	$1.00~\mu s$	$9.966~\mu s$	1 ms	<u> </u>	
10,000	$0.013 \ \mu s$	$10 \ \mu s$	$130~\mu s$	100 ms		
100,000	$0.017 \ \mu s$	$0.10 \mathrm{\ ms}$	$1.67~\mathrm{ms}$	10 sec		
1,000,000	$0.020 \ \mu s$	$1 \mathrm{\ ms}$	19.93 ms	$16.7 \min$		
10,000,000	$0.023~\mu s$	$0.01 \mathrm{sec}$	$0.23 \sec$	$1.16 \mathrm{days}$		
100,000,000	$0.027~\mu { m s}$	$0.10 \sec$	$2.66 \sec$	$115.7 \mathrm{days}$		
1,000,000,000	$0.030 \ \mu s$	1 sec	$29.90 \mathrm{sec}$	31.7 years		

Figure 2.4: Growth rates of common functions measured in nanoseconds

$\Omega(...)$ means a lower bound

• We say "T(n) is $\Omega(g(n))$ " if T(n) grows at least as fast as g(n) as n gets large.

Formally,

$$T(n) = \Omega(g(n))$$

$$\Leftrightarrow$$

$$\exists c, n_0 > 0 \text{ s. t. } \forall n \ge n_0,$$

$$0 \le c \cdot g(n) \le T(n)$$
Switched these!!

Example $n \log_2(n) = \Omega(3n)$

$$T(n) = \Omega(g(n))$$

$$\Leftrightarrow$$

$$\exists c, n_0 > 0 \text{ s. t. } \forall n \ge n_0,$$

$$0 \le c \cdot g(n) \le T(n)$$

• Choose
$$n_0 = 2$$

$$\forall n \geq 2$$
,

$$0 \le \frac{3n}{3} \le n \log_2(n)$$

Example: $\sqrt{n} = \Omega(\lg n)$, with c = 1 and $n_0 = 16$.

Examples of functions in $\Omega(n^2)$:

Examples of functions in
$$\Omega(n^2)$$
:
 n^2
 $n^2 + n$

$$n^2 + n$$

 $n^2 - n$
 $1000n^2 + 1000n$

$$1000n^2 + 1000n$$

$$1000n^2 + 1000n$$
$$1000n^2 - 1000n$$

$$1000n^2 - 1000n$$
 Also,

$$n^{3}$$

$$n^{2.00001}$$

$$n^{2} \lg \lg \lg g$$

$$2^{2^{n}}$$

Theta Notation

<u>Definition</u>: $T(n) = \theta(f(n))$ if and only if

$$T(n) = O(f(n))$$
 and $T(n) = \Omega(f(n))$

Equivalent: there exist constants c_1, c_2, n_0 such that

$$c_1 f(n) \le T(n) \le c_2 f(n)$$

$$\forall n \geq n_0$$

Big Theta notation

Tight bounds. f(n) is $\Theta(g(n))$ if there exist constants $c_1 > 0$, $c_2 > 0$, and $n_0 \ge 0$ such that $0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ for all $n \ge n_0$.

Ex.
$$f(n) = 32n^2 + 17n + 1$$
.

- f(n) is $\Theta(n^2)$. \leftarrow choose $c_1 = 32, c_2 = 50, n_0 = 1$
- f(n) is neither $\Theta(n)$ nor $\Theta(n^3)$.

Typical usage. Mergesort makes $\Theta(n \log n)$ compares to sort n elements.

$$\Theta(...)$$
 means both!

• We say "T(n) is $\Theta(g(n))$ " iff both:

$$T(n) = Oig(g(n)ig)$$
 and

 $T(n) = \Omega(g(n))$

Θ-notation

$$\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$$
.

g(n) is an asymptotically tight bound for f(n).

Example: $n^2/2 - 2n = \Theta(n^2)$, with $c_1 = 1/4$, $c_2 = 1/2$, and $n_0 = 8$.

Let $T(n) = \frac{1}{2}n^2 + 3n$. Which of the following statements are true ? (Check all that apply.)

$$T(n) = \Theta(n^2).$$
 $[n_0 = 1, c_1 = 1/2, c_2 = 4]$

$$T(n) = O(n^3).$$
 $[n_0 = 1, c = 4]$

Take-away from examples

 To prove T(n) = O(g(n)), you have to come up with c and n₀ so that the definition is satisfied.

- To prove T(n) is NOT O(g(n)), one way is proof by contradiction:
 - Suppose (to get a contradiction) that someone gives you a c and an n_0 so that the definition *is* satisfied.
 - Show that this someone must by lying to you by deriving a contradiction.

Big Oh Examples

$$3n^{2} - 100n + 6 = O(n^{2})$$
 because $3n^{2} > 3n^{2} - 100n + 6$
 $3n^{2} - 100n + 6 = O(n^{3})$ because $.01n^{3} > 3n^{2} - 100n + 6$
 $3n^{2} - 100n + 6 \neq O(n)$ because $c \cdot n < 3n^{2}$ when $n > c$

Think of the equality as meaning in the set of functions.

Big Omega Examples

$$3n^2 - 100n + 6 = \Omega(n^2)$$
 because $2.99n^2 < 3n^2 - 100n + 6$
 $3n^2 - 100n + 6 \neq \Omega(n^3)$ because $3n^2 - 100n + 6 < n^3$
 $3n^2 - 100n + 6 = \Omega(n)$ because $10^{10^{10}}n < 3n^2 - 100n + 6$

Big Theta Examples

$$3n^2 - 100n + 6 = \Theta(n^2)$$
 because O and Ω
 $3n^2 - 100n + 6 \neq \Theta(n^3)$ because O only
 $3n^2 - 100n + 6 \neq \Theta(n)$ because Ω only

Yet more examples

•
$$n^3 + 3n = O(n^3 - n^2)$$

• $n^3 + 3n = \Omega(n^3 - n^2)$

•
$$n^3 + 3n = \Theta(n^3 - n^2)$$

remember that $log = log_2$ in this class.

More Big Oh relatives

Little-Oh Notation

<u>Definition</u>: T(n) = o(f(n)) if and only if for all constants c>0, there exists a constant n_0 such that

$$T(n) \le c \cdot f(n) \quad \forall n \ge n_0$$

Exercise:
$$\forall k \geq 1, n^{k-1} = o(n^k)$$

o-notation

The asymptotic upper bound provided by O-notation may or may not be asymptotically tight. The bound $2n^2 = O(n^2)$ is asymptotically tight, but the bound $2n = O(n^2)$ is not. We use o-notation to denote an upper bound that is not asymptotically tight. We formally define o(g(n)) ("little-oh of g of n") as the set

$$o(g(n)) = \{f(n) : \text{ for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0 \}$$
.

For example, $2n = o(n^2)$, but $2n^2 \neq o(n^2)$.

The definitions of O-notation and o-notation are similar. The main difference is that in f(n) = O(g(n)), the bound $0 \le f(n) \le cg(n)$ holds for *some* constant c > 0, but in f(n) = o(g(n)), the bound $0 \le f(n) < cg(n)$ holds for *all* constants c > 0. Intuitively, in o-notation, the function f(n) becomes insignificant relative to g(n) as n approaches infinity; that is,

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0. \tag{3.1}$$

Some authors use this limit as a definition of the o-notation; the definition in this book also restricts the anonymous functions to be asymptotically nonnegative.

ω -notation

By analogy, ω -notation is to Ω -notation as o-notation is to O-notation. We use ω -notation to denote a lower bound that is not asymptotically tight. One way to define it is by

$$f(n) \in \omega(g(n))$$
 if and only if $g(n) \in o(f(n))$.

Formally, however, we define $\omega(g(n))$ ("little-omega of g of n") as the set

$$\omega(g(n)) = \{f(n) : \text{ for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le cg(n) < f(n) \text{ for all } n \ge n_0 \}$$
.

For example, $n^2/2 = \omega(n)$, but $n^2/2 \neq \omega(n^2)$. The relation $f(n) = \omega(g(n))$ implies that

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty ,$$

if the limit exists. That is, f(n) becomes arbitrarily large relative to g(n) as n approaches infinity.

o-notation

 $n^{1.9999} = o(n^2)$ $n^2/\lg n = o(n^2)$

 $n^2/1000 \neq o(n^2)$

 ω -notation

 $n^{2.0001} = \omega(n^2)$ $n^2 \lg n = \omega(n^2)$ $n^2 \neq \omega(n^2)$

- $o(g(n)) = \{f(n) : \text{ for all constants } c > 0, \text{ there exists a constant } c > 0\}$

- - $n_0 > 0$ such that $0 \le f(n) < cg(n)$ for all $n \ge n_0$.
- Another view, probably easier to use: $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$.
- $n^2 \neq o(n^2)$ (just like $2 \neq 2$)
- $\omega(g(n)) = \{f(n) : \text{ for all constants } c > 0, \text{ there exists a constant } c > 0, \text{ there exists } c > 0, \text{ ther$

 - $n_0 > 0$ such that $0 \le cg(n) < f(n)$ for all $n \ge n_0$.
- Another view, again, probably easier to use: $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$.

Comparing functions

Many of the relational properties of real numbers apply to asymptotic comparisons as well. For the following, assume that f(n) and g(n) are asymptotically positive.

Transitivity:

$$f(n) = \Theta(g(n))$$
 and $g(n) = \Theta(h(n))$ imply $f(n) = \Theta(h(n))$, $f(n) = O(g(n))$ and $g(n) = O(h(n))$ imply $f(n) = O(h(n))$, $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$ imply $f(n) = \Omega(h(n))$, $f(n) = o(g(n))$ and $g(n) = o(h(n))$ imply $f(n) = o(h(n))$, $f(n) = \omega(g(n))$ and $g(n) = \omega(h(n))$ imply $f(n) = \omega(h(n))$.

Reflexivity:

$$f(n) = \Theta(f(n)),$$

$$f(n) = O(f(n)),$$

$$f(n) = \Omega(f(n)).$$

Symmetry:

$$f(n) = \Theta(g(n))$$
 if and only if $g(n) = \Theta(f(n))$.

Transpose symmetry:

$$f(n) = O(g(n))$$
 if and only if $g(n) = \Omega(f(n))$, $f(n) = o(g(n))$ if and only if $g(n) = \omega(f(n))$.

Because these properties hold for asymptotic notations, we can draw an analogy between the asymptotic comparison of two functions f and g and the comparison of two real numbers g and g:

$$f(n) = O(g(n))$$
 is like $a \le b$,
 $f(n) = \Omega(g(n))$ is like $a \ge b$,
 $f(n) = \Theta(g(n))$ is like $a = b$,
 $f(n) = o(g(n))$ is like $a < b$,
 $f(n) = \omega(g(n))$ is like $a > b$.

We say that f(n) is *asymptotically smaller* than g(n) if f(n) = o(g(n)), and f(n) is *asymptotically larger* than g(n) if $f(n) = \omega(g(n))$.

Where Does Notation Come From?

"On the basis of the issues discussed here, I propose that members of SIGACT, and editors of compter science and mathematics journals, adopt the O, Ω , and Θ notations as defined above, unless a better alternative can be found reasonably soon".

-D. E. Knuth, "Big Omicron and Big Omega and Big Theta", SIGACT News, 1976. Reprinted in "Selected Papers on Analysis of Algorithms."

Suggested Reading

- → Algorithms (CLRS)
 - Chapter 3
 - Section 3.1
- → Algorithm illuminated (Part 1) by Tim Roughgarden
 - Chapter 2
 - Section 2.4