Algorithms:
Complexity (Big
Omega and Big Theta)

Omega Notation

Definition : T(n) = Q(f(n)) \ Picture
If and only if there exist .
constants ¢C, g such that f,,/f""

T(n)>c-f(n) Vn>ng.

Big Omega notation

Lower bounds. f(n) is Q(g(n)) if there exist constants ¢>0 and n, = 0

such that f(n) = c-g(n) = 0 forall n = n,.

Ex. f(n)=32n*>+ 17n+ 1.
* f(n) is both Q(n?) and Q(n). <«— choose c=32,m =1
* f(n) is not Q(n?).

Typical usage. Any compare-based sorting algorithm requires Q(n log n)

compares in the worst case.

fin)

¢ gln)

ny

Vacuous statement. Any compare-based sorting algorithm requires

at least O(n log n) compares in the worst case.

n

n f(n) lgn n nlgn n* 2 n!

10 0.003 pus | 0.01 us 0.033 us 0.1 pus 1 ps 3.63 ms
20 0.004 pus 0.02 us 0.086 us 0.4 us 1 ms 77.1 years
30 0.005 ps 0.03 pus 0.147 ps 0.9 ps 1 sec 8.4 x 10*° yrs
40 0.005 ps 0.04 ps 0.213 ps 1.6 us 18.3 min

50 0.006 ps 0.05 ps 0.282 us 2.5 us 13 days

100 0.007 ps 0.1 us 0.644 us 10 ps 4 x 10™° yrs

1,000 0.010 ps 1.00 us 9.966 us 1 ms

10,000 0.013 pus 10 ps 130 ps 100 ms

100,000 0.017 ps | 0.10 ms 1.67 ms 10 sec

1.000,000 0.020 ps 1 ms 19.93 ms 16.7 min

10,000,000 0.023 ps | 0.01 sec | 0.23 sec 1.16 days

100,000,000 0.027 ps 0.10 sec 2.66 sec 115.7 days

1,000,000,000 0.030 pus 1 sec 29.90 sec 31.7 years

Figure 2.4: Growth rates of common functions measured in nanoseconds

()(...) means a lower bound

* We say “T'(n) is (g (n))” if T(n) grows at least as
fast as g(n) as n gets large.

* Formally,

T(n) =Q(gn)
=
de¢, 0 >0 8.1 Y21y,
0<c-gn)<Tn)
N S

Switched these!!

Example
nlog,(n) = Q(3n)

T(n) = Q(g(n))
—

dc,ng >0 s.t. Vn = ny,

0<c-gn)<Th)

T(n) = Omegalg(n))

~— T(n) = n log(n)
- gin) = 3*n
- 13 * g(n)

n=2

* Choosec=1/3
* Chooseny=2
* Then

vn =22;

3n
) < 3 < nlog,(n)

™S

Example: /n = Q(lgn), with ¢ = 1 and ny = 16.
Examples of functions in Q(n?):

n>

n* +n

n® —n

1000n° + 1000n
1000722 — 10001
Also,

n 3
o
n- 00001

Theta Notation

Definition : 7T'(n) = 6(f(n)) if and only if
T(n)=0(f(n)) and T(n)=9Q(f(n))

Equivalent : there exist constants ¢1,¢2, 10 such that
cifln) € Tin) Lefin)
vn = T

Big Theta notation

Tight bounds. f(n) is ©(g(n)) if there exist constants ¢; >0, ¢2>0, and n, = 0

such that 0 < ¢1- g(n) < f(n) < c2-g(n) forall n = n,. s

fin)
Ex. f(n)=32n*>+17n+ 1.
% f(n) is 9("2). <« choosec1=32,c2=50,m=1

* f(n) is neither ©(n) nor O(n?).

¢y g(n)

o n

Typical usage. Mergesort makes O(n log n) compares to sort n elements.

/

between '2 nlogan
and n loga n

©(...) means both!

* We say “T'(n) is ©(g(n))” iff both:

T(n) =0(g(n))

and

T(n) = Q(g(n))

©-notation

O(g(n)) = {f(n) : there exist positive constants ¢, ¢z, and ng such that
0 = cig(n) = f(n) = cg(n) forall n = ny} .

c,g(m)

fAn)

c,g(n)

n
ny

g(n) is an asymptotically tight bound for f(n).

Example: n’/2-2n=0 (nz), withc1=1/4,¢c,=1/2,and no = 8.

R 1 . ‘ . .
Let 1'(n) = ;Z—'nz +3n . Which of the following statements are

true ? (Check all that apply.)
T(n) = 0(n).

S T(n) - Q(n) :’}’LO —]_’ C = ‘/a]

-l'/

__~OTm) =82 ng = I; i .= 1/ 265 =]
/:aD T(n) = 0(n?). [n() =1,c= L'{}

Take-away from examples

* To prove T(n) = O(g(n)), you have to come up with ¢
and n,so that the definition is satisfied.

* To prove T(n) is NOT O(g(n)), one way is proof by
contradiction:

* Suppose (to get a contradiction) that someone gives you
a ¢ and an n, so that the definition is satisfied.

* Show that this someone must by lying to you by deriving
a contradiction.

Big Oh Examples

3n* — 100n + 6 = O(n?) because 3n* > 3n* — 100n + 6
3n* — 100n + 6 = O(n®) because .01n* > 3n* — 100n + 6
3n”* — 100n + 6 # O(n) because c-n < 3n* when n > ¢

Think of the equality as meaning in the set of functions.

Big Omega Examples

Q(n?) because 2.99n* < 3n* — 100n + 6
Q(n?) because 3n* —100n +6 < n’
()(n) because 101”5 < 3n% — 100n + 6

3n% — 100n + 6
3n? — 100n + 6
3n? — 100n + 6

|

Big Theta Examples

3n* — 100n + 6 = O(n*) because O and
3n® — 100n + 6 # O(n’) because O only
3n* — 100n + 6 # O(n) because Q only

Yet more examples

* n3+3n=0(n>-n?
n?®+3n=Q(n>-n?)
* n®+3n =0(n?*-n?

. 37 is NOT O(2")

* log(n) = Q(In(n))
* log(n) = ©(2'°glceln

remember that log = log, in this class.

More Big Oh relatives

Little-Oh Notation

Definition : T(n) = o(f(n)) if and only if for all
constants c>0, there exists a constant 70
such that

T(n)<c-f(n) VYn>ng

Exercise : Vk > 1,n" ! = o(n")

o-notation

The asymptotic upper bound provided by O-notation may or may not be asymp-
totically tight. The bound 2n? = O(n?) is asymptotically tight, but the bound
2n = O(n?) is not. We use o-notation to denote an upper bound that is not asymp-
totically tight. We formally define o(g(n)) (“little-oh of g of n”) as the set

0o(g(n)) = {f(n) : for any positive constant ¢ > 0, there exists a constant
nyg > 0suchthat 0 < f(n) < cg(n)foralln > ngy} .

For example, 2n = o(n?), but 2n? # o(n?).

The definitions of O-notation and o-notation are similar. The main difference
is that in f(n) = O(g(n)), the bound 0 < f(n) < cg(n) holds for some con-
stant ¢ > 0, but in f(n) = o(g(n)), the bound 0 < f(n) < cg(n) holds for all
constants ¢ > 0. Intuitively, in o-notation, the function f(n) becomes insignificant
relative to g(n) as n approaches infinity; that is,

O
noo g (n)

Some authors use this limit as a definition of the o-notation; the definition in this
book also restricts the anonymous functions to be asymptotically nonnegative.

0. (3.1)

@ -notation

By analogy, w-notation is to {2-notation as o-notation is to O-notation. We use
w-notation to denote a lower bound that is not asymptotically tight. One way to
define it 1s by

f(n) € w(g(n)) if and only if g(n) € o(f(n)) .
Formally, however, we define w(g(n)) (“little-omega of g of n™) as the set

w(g(n)) = {f(n): for any positive constant ¢ > 0, there exists a constant
ng > 0suchthat 0 < cg(n) < f(n)foralln > ny} .

For example, n?/2 = w(n), but n?/2 # w(n?). The relation f(n) = w(g(n))
implies that

hm M —i e © 5
n—o0 g(n)
if the limit exists. That is, f(n) becomes arbitrarily large relative to g(n) as n

approaches infinity.

o-notation

o(g(n)) = {f(n) : for all constants ¢ > 0, there exists a constant
no > 0O such that0 < f(n) < cg(n) forall n > ny} .

Another view, probably easier to use: lim f(n) _
n—0oc g(n)

0.

n|.9999 - 0("2)

n’/lgn = o(n?)
n? # o(n?) (just like 2 £ 2)
n%/1000 # o(n?)

w-notation

w(g(n)) = {f(n) : for all constants ¢ > 0, there exists a constant
ng > 0 such that 0 < cg(n) < f(n) forall n > ny} .

n
Another view, again, probably easier to use: lim AL, = 00
n—oc g(n)

nZ.O()Ol - w(nZ)

nzlgn = w(n?)
n? e w(n®)

Comparing functions

Many of the relational properties of real numbers apply to asymptotic comparisons
as well. For the following, assume that f(n) and g(n) are asymptotically positive.

Transitivity:

f(n) = O(g(n)) and g(n) = O(h(n)) imply f(n) = O(h(n)),
f(n) = O(g(n)) and g(n) = O(h(n)) imply f(n) = O(h(n)) .
f(n) = Q(g(n)) and g(n) = Q(h(n)) imply f(n) = Q(h(n)),
f(n) = o(g(n)) and g(n) = o(h(n)) imply f(n) = o(h(n)),
f(n) = w(g(n)) and g(n) = w(h(n)) imply f(n) = w(h(n)).
Reflexivity:
f(n) = O(f(n),
fm) = 0O(f(n)),
fn) = Q(f(n)).

Symmetry:
f(n) = O(g(n)) if and only if g(n) = O(f(n)).
Transpose symmetry:

f(n) = O(g(n)) ifandonly if g(n) = Q(f(n)),
f(n) = o(g(n)) ifandonlyif g(n) = w(f(n)).

Because these properties hold for asymptotic notations, we can draw an analogy
between the asymptotic comparison of two functions f and g and the comparison
of two real numbers a and b:

f(n)=0(gn)) islike a<bh,
f(n) =(g(n)) islike a=>b,
f(n) =0O(g(n)) islike a=05b,
f(n) =o0(gn)) islike a<b,
f(n)=w(g(n)) islike a>0>b.

We say that f(n) is asymptotically smaller than g(n) if f(n) = o(g(n)),and f(n)
is asymptotically larger than g(n) if f(n) = w(g(n)).

Where Does Notation Come From?

«On the basis of the issues discussed here, I propose
that members of SIGACT, and editors of compter
science and mathematics journals, adopt the O, (),
and O notations as defined above, unless a better
alternative can be found reasonably soon”.

-D. E. Knuth, “Big Omicron and Big Omega and
Big Theta’, SIGACT News, 1976. Reprinted in
‘Selected Papers on Analysis of Algorithms.”

Suggested Reading

= Algorithms (CLRS)
¢ Chapter 3
® Section 3.1

- Algorithm illuminated (Part 1) by Tim Roughgarden
¢ Chapter 2
® Section 2.4

