Algorithms: **Complexity (Big Omega and Big Theta)**

Omega Notation

Definition: $T(n) = \Omega(f(n))$ If and only if there exist constants c, n_0 such that

$$
T(n) \geq c \cdot f(n) \quad \forall n \geq n_0.
$$

Picture

Big Omega notation

Lower bounds. $f(n)$ is $\Omega(g(n))$ if there exist constants $c > 0$ and $n_0 \ge 0$ such that $f(n) \geq c \cdot g(n) \geq 0$ for all $n \geq n_0$.

Ex. $f(n) = 32n^2 + 17n + 1$.

- $f(n)$ is both $\Omega(n^2)$ and $\Omega(n)$. \leftarrow choose $c = 32$, $n_0 = 1$
- \cdot $f(n)$ is not $\Omega(n^3)$.

Typical usage. Any compare-based sorting algorithm requires $\Omega(n \log n)$ compares in the worst case.

Vacuous statement. Any compare-based sorting algorithm requires at least $O(n \log n)$ compares in the worst case.

Figure 2.4: Growth rates of common functions measured in nanoseconds

Ω (...) means a lower bound

- We say " $T(n)$ is $\Omega(g(n))$ " if $T(n)$ grows at least as fast as $g(n)$ as n gets large.
- Formally,

$$
T(n) = \Omega(g(n))
$$

\n
$$
\Leftrightarrow
$$

\n
$$
\exists c, n_0 > 0 \text{ s.t. } \forall n \ge n_0,
$$

\n
$$
0 \le c \cdot g(n) \le T(n)
$$

\nSwitched these!

Example $n \log_2(n) = \Omega(3n)$

 $T(n) = \Omega(g(n))$ \Longleftrightarrow $\exists c, n_0 > 0 \text{ s.t. } \forall n \geq n_0$ $0 \leq c \cdot g(n) \leq T(n)$

$$
Choose c = 1/3
$$

• Choose
$$
n_0 = 2
$$

Then \bullet

$$
\forall n \ge 2,
$$

$$
\le \frac{3n}{3} \le n \log_2(n)
$$

Example: $\sqrt{n} = \Omega(\lg n)$, with $c = 1$ and $n_0 = 16$. Examples of functions in $\Omega(n^2)$:

```
n^2n^2 + nn^2 - n1000n^2 + 1000n1000n^2 - 1000nAlso,
n<sup>3</sup>n^{2.00001}n^2 lg lg lg n<br>2^{2^n}
```
Theta Notation

Definition : $T(n) = \theta(f(n))$ if and only if $T(n) = O(f(n))$ and $T(n) = \Omega(f(n))$

Equivalent : there exist constants c_1, c_2, n_0 such that $c_1 f(n) \leq T(n) \leq c_2 f(n)$ $\forall n \geq n_0$

Big Theta notation

Tight bounds. $f(n)$ is $\Theta(g(n))$ if there exist constants $c_1 > 0$, $c_2 > 0$, and $n_0 \ge 0$ such that $0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ for all $n \ge n_0$.

- Ex. $f(n) = 32n^2 + 17n + 1$.
	- $f(n)$ is $\Theta(n^2)$. \leftarrow choose $c_1 = 32, c_2 = 50, n_0 = 1$
	- $f(n)$ is neither $\Theta(n)$ nor $\Theta(n^3)$.

Θ (...) means both!

• We say " $T(n)$ is $\Theta(g(n))$ " iff both:

$$
T(n) = O\big(g(n)\big)
$$

and

 $T(n) = \Omega(g(n))$

O-notation

 $\Theta(g(n)) = \{f(n) :$ there exist positive constants c_1, c_2 , and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$.

 $g(n)$ is an *asymptotically tight bound* for $f(n)$.

Example: $n^2/2 - 2n = \Theta(n^2)$, with $c_1 = 1/4$, $c_2 = 1/2$, and $n_0 = 8$.

Let $T(n) = \frac{1}{2}n^2 + 3n$. Which of the following statements are true ? (Check all that apply.) \Box $T(n) = O(n)$. $[n_0 = 1, c = \mathbf{Z}]$ $\blacktriangleright \Box$ $T(n) = \Omega(n)$. $[n_0 = 1, c_1 = 1/2, c_2 = 4]$ $\Box T(n) = \Theta(n^2).$ $T(n) = O(n^3).$ $[n_0 = 1, c = 4]$

Take-away from examples

• To prove $T(n) = O(g(n))$, you have to come up with c and n_0 so that the definition is satisfied.

- To prove $T(n)$ is **NOT** $O(g(n))$, one way is **proof by** contradiction:
	- Suppose (to get a contradiction) that someone gives you a c and an n_0 so that the definition is satisfied.
	- Show that this someone must by lying to you by deriving a contradiction.

Big Oh Examples

$$
3n2 - 100n + 6 = O(n2) because 3n2 > 3n2 - 100n + 63n2 - 100n + 6 = O(n3) because .01n3 > 3n2 - 100n + 63n2 - 100n + 6 \neq O(n) because c \cdot n < 3n2 when n > c
$$

Think of the equality as meaning in the set of functions.

Big Omega Examples

$$
3n2 - 100n + 6 = \Omega(n2) because 2.99n2 < 3n2 - 100n + 63n2 - 100n + 6 $\neq \Omega(n3) because 3n2 - 100n + 6 < n3$
3n² - 100n + 6 = $\Omega(n)$ because $10^{1010}n < 3n2 - 100n + 6$
$$

Big Theta Examples

$$
3n2 - 100n + 6 = \Theta(n2) because O and Ω
\n
$$
3n2 - 100n + 6 \neq \Theta(n3) because O only
$$

\n
$$
3n2 - 100n + 6 \neq \Theta(n) because \Omega only
$$
$$

Yet more examples

- n^3 + 3n = O(n^3 n^2)
- n^3 + 3n = $\Omega(n^3 n^2)$
- n^3 + 3n = $\Theta(n^3 n^2)$
- 3^n is **NOT** $O(2^n)$
-
- $log(n) = \Omega(ln(n))$
• $log(n) = \Theta(2^{\log log(n)})$

remember that $log = log_2$ in this class.

More Big Oh relatives

Little-Oh Notation

Definition : $T(n) = o(f(n))$ if and only if for all constants $c>0$, there exists a constant n_0 such that

$$
T(n) \leq c \cdot f(n) \quad \forall n \geq n_0
$$

Exercise: $\forall k \geq 1, n^{k-1} = o(n^k)$

o-notation

The asymptotic upper bound provided by O -notation may or may not be asymptotically tight. The bound $2n^2 = O(n^2)$ is asymptotically tight, but the bound $2n = O(n^2)$ is not. We use *o*-notation to denote an upper bound that is not asymptotically tight. We formally define $o(g(n))$ ("little-oh of g of n") as the set

 $o(g(n)) = \{f(n) :$ for any positive constant $c > 0$, there exists a constant $n_0 > 0$ such that $0 \le f(n) < cg(n)$ for all $n \ge n_0$.

For example, $2n = o(n^2)$, but $2n^2 \neq o(n^2)$.

The definitions of O -notation and o -notation are similar. The main difference is that in $f(n) = O(g(n))$, the bound $0 \le f(n) \le cg(n)$ holds for *some* constant $c > 0$, but in $f(n) = o(g(n))$, the bound $0 \le f(n) < cg(n)$ holds for all constants $c > 0$. Intuitively, in o-notation, the function $f(n)$ becomes insignificant relative to $g(n)$ as *n* approaches infinity; that is,

$$
\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \tag{3.1}
$$

Some authors use this limit as a definition of the o -notation; the definition in this book also restricts the anonymous functions to be asymptotically nonnegative.

ω -notation

By analogy, ω -notation is to Ω -notation as ω -notation is to Ω -notation. We use ω -notation to denote a lower bound that is not asymptotically tight. One way to define it is by

 $f(n) \in \omega(g(n))$ if and only if $g(n) \in o(f(n))$.

Formally, however, we define $\omega(g(n))$ ("little-omega of g of n") as the set $\omega(g(n)) = \{f(n) : \text{ for any positive constant } c > 0, \text{ there exists a constant }$ $n_0 > 0$ such that $0 \le cg(n) < f(n)$ for all $n \ge n_0$.

For example, $n^2/2 = \omega(n)$, but $n^2/2 \neq \omega(n^2)$. The relation $f(n) = \omega(g(n))$ implies that

 $\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty,$

if the limit exists. That is, $f(n)$ becomes arbitrarily large relative to $g(n)$ as n approaches infinity.

o-notation

 $o(g(n)) = {f(n) :$ for all constants $c > 0$, there exists a constant $n_0 > 0$ such that $0 \le f(n) < cg(n)$ for all $n \ge n_0$.

Another view, probably easier to use: $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$.

$$
n^{1.9999} = o(n^2)
$$

\n
$$
n^2 / \lg n = o(n^2)
$$

\n
$$
n^2 \neq o(n^2) \text{ (just like 2 } \neq 2)
$$

\n
$$
n^2 / 1000 \neq o(n^2)
$$

ω -notation

 $\omega(g(n)) = \{f(n) :$ for all constants $c > 0$, there exists a constant $n_0 > 0$ such that $0 \le cg(n) < f(n)$ for all $n \ge n_0$.

Another view, again, probably easier to use: $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$.

 $n^{2.0001} = \omega(n^2)$ $n^2 \lg n = \omega(n^2)$ $n^2 \neq \omega(n^2)$

Comparing functions

Many of the relational properties of real numbers apply to asymptotic comparisons as well. For the following, assume that $f(n)$ and $g(n)$ are asymptotically positive.

Transitivity:

$$
f(n) = \Theta(g(n)) \text{ and } g(n) = \Theta(h(n)) \text{ imply } f(n) = \Theta(h(n)),
$$

\n
$$
f(n) = O(g(n)) \text{ and } g(n) = O(h(n)) \text{ imply } f(n) = O(h(n)),
$$

\n
$$
f(n) = \Omega(g(n)) \text{ and } g(n) = \Omega(h(n)) \text{ imply } f(n) = \Omega(h(n)),
$$

\n
$$
f(n) = o(g(n)) \text{ and } g(n) = o(h(n)) \text{ imply } f(n) = o(h(n)),
$$

\n
$$
f(n) = \omega(g(n)) \text{ and } g(n) = \omega(h(n)) \text{ imply } f(n) = \omega(h(n)).
$$

Reflexivity:

$$
f(n) = \Theta(f(n)),
$$

\n
$$
f(n) = O(f(n)),
$$

\n
$$
f(n) = \Omega(f(n)).
$$

Symmetry:

 $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$.

Transpose symmetry:

$$
f(n) = O(g(n))
$$
 if and only if $g(n) = \Omega(f(n))$,

$$
f(n) = o(g(n))
$$
 if and only if $g(n) = \omega(f(n))$.

Because these properties hold for asymptotic notations, we can draw an analogy between the asymptotic comparison of two functions f and g and the comparison of two real numbers a and b :

We say that $f(n)$ is *asymptotically smaller* than $g(n)$ if $f(n) = o(g(n))$, and $f(n)$ is *asymptotically larger* than $g(n)$ if $f(n) = \omega(g(n))$.

Where Does Notation Come From?

"On the basis of the issues discussed here, I propose that members of SIGACT, and editors of compter science and mathematics journals, adopt the O , Ω , and Θ notations as defined above, unless a better alternative can be found reasonably soon".

> -D. E. Knuth, "Big Omicron and Big Omega and Big Theta", SIGACT News, 1976. Reprinted in "Selected Papers on Analysis of Algorithms."

Suggested Reading

- Algorithms (CLRS) \rightarrow
	- Chapter 3
		- Section 3.1 \bullet
- Algorithm illuminated (Part 1) by Tim Roughgarden \rightarrow
	- **Chapter 2**
		- Section 2.4